Application of indirect algorithms to reference interval harmonization in Canada

Mary Kathryn Bohn, PhD

Clinical Chemistry Fellow, University of Toronto, Canada CSCC Working Group on Reference Interval Harmonization (hRI-WG)

IFCC Webinar – Principles and practice of indirect methods for RI establishment November 21, 2023

eSCC

CANADIAN SOCIETY OF CLINICAL CHEMISTS

Importance of Harmonization in Laboratory Medicine

Harmonization: the equivalence of test results and interpretation among different routine measurement procedures over time and space according to defined analytical and clinical quality specifications

Reference Interval Harmonization:

Using **one interpretative recommendation** that may be ageand/or sex-stratified for an analyte across several laboratories, regardless of analytical assay or patient population

Not appropriate for measurands that demonstrate significant bias across assays

Driving Forces for Reference Interval Harmonization

Often assumed test results (or their interpretation) are **interchangeable**, regardless of the laboratory

Integration of hospital networks, multidisciplinary care across institutions, and accessibility of results to patients Significant and unwarranted variation in RIs (same analytical methodology)

(lack of appropriate follow-up, unnecessary investigations, and/or inappropriate resource utilization, clinical confusion)

Reference Interval Harmonization Efforts Globally

ESCC CANADIAN SOCIETY OF CLINICAL CHEMISTS

CALIPER

Sampling: direct, pediatric Sample type: multiple Statistical method: nonparametric

CSCC hRI-WG

Sampling: big data, adult Sample type: serum/plasma Statistical method: refineR

UK Pathology Harmony

Sampling: Consensus, adults Sample Type: Serum Statistical method: Consensus

NORIP

Sampling: Direct, pediatric & adult Sample Type: Serum/plasma Statistical method: Nonparametric

AHRIA & AHRIP

Sampling: Combination, pediatric & adult Sample Type: Serum/plasma Statistical method: Combination Main Objective: Establish evidence-based harmonized/common reference intervals (hRIs) and support their implementation in laboratories across Canada.

Co-Chairs

Khosrow Adeli Christine Collier

WG Members

Dana Bailey Cynthia Balion Mary Kathryn Bohn George Cembrowski Vincent De Guire Victoria Higgins Benjamin Jung Zahraa Mohammed-Ali Karina Rodriguez Capote David Seccombe Jennifer Taher Albert Tsui Allison Venner Nicole White-AlHabeeb

Status of RI Variation in Canadian Laboratories (hRI-WG Survey 2017)

() CrossMarl

Analytical

National Survey of Adult and Pediatric Reference Intervals in Clinical Laboratories across Canada: A Report of the CSCC Working Group on Reference Interval Harmonization

Khosrow Adeli^{a,}, Victoria Higgins^a, David Seccombe^b, Christine P. Collier^c, Cynthia M. Balion^d, George Cembrowski^e, Allison A. Venner^f, Julie Shaw^g, on behalf of the CSCC Reference Interval Harmonization (hRI) Working Group

- ^a Pediatric Laboratory Medicine, The Hospital for Sick Children and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada ^b CEQAL, Vancouver, BC, Canada
- ^c Kingston General Hospital and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada

^d Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
^e Department of Laboratory Medicine and Pathology, University of Alberta, Educatory AB, Canada

⁶ Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada

⁴ Calgary Laboratory Services and Department of Pathology and Laboratory Medicine, Camming School of Medicine, University of Calgary, Calgary, AB, Canada ⁸ Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Eastern Ontario Regional Laboratories Association and University of Ottawa, Ottawa, ON, Canada

Design:

- 37 laboratories, 7 analytes: RIs for ALT, ALP, calcium, creatinine, fT4, hemoglobin, sodium
- 40 laboratories measured 6 analytes in reference samples (hemoglobin excluded)

Key Findings:

- Variability in RIs even between laboratories using the same instrumentation
- RI variability exceed test result variability

Can BIG data and indirect reference interval methods serve as tools for reference interval harmonization?

Clinical Chemistry 69:9 991–1008 (2023) Informatics and Statistics

Reference Interval Harmonization: Harnessing the Power of Big Data Analytics to Derive Common Reference Intervals across Populations and Testing Platforms

Mary Kathryn Bohn,^{a,b} Dana Bailey,^c Cynthia Balion,^d George Cembrowski ^(b),^e Christine Collier,^f Vincent De Guire,^g Victoria Higgins,^h Benjamin Jung,^{a,b} Zahraa Mohammed Ali,ⁱ David Seccombe,^j Jennifer Taher,^{b,k} Albert K.Y. Tsui,^{e,l} Allison Venner,^{l,m} and Khosrow Adeli^{a,b,*}

Big Data Driven Approach:

An initial panel of 16 analytes were selected as candidates for harmonization *(literature, EQA, IFU review)*

- Alanine aminotransferase
- Alkaline phosphatase
- Albumin
- Bilirubin (total)
- Creatinine
- Calcium
- Chloride
- CO2 (total)

- Free T4
- LDH
- Magnesium
- Phosphate
- Potassium
- Sodium
- TSH
- Total Protein

Two years of data extracted from **4 community labs across Canada**

Centre A (Alberta, Advia/Cenatur)	Centre B (British Columbia, Cobas/Architect)	Up to 14 million data
Centre C (Ontario, Cobas/Architect)	Centre D (Ontario, Cobas)	points!

Big Data Approach:

Ammer et al. Scientific reports. 2021 Aug 6;11(1):16023.

Big Data Approach: + verification

Healthy Canadians recruited from Toronto (ON) and Edmonton (AB) Canada

	Indirect Analysis of Provincial Data					Direct International Initiatives*			
	Advia – AB	Cobas – BC	Cobas – ON1	Cobas – ON2	All	AHRIA	AUSSIE	NORIP	UK
N	203541	124417	423031	157662	908651				
LL 19-79y	0.73 [0.73, 0.73]	0.74 [0.72, 0.75]	0.73 [0.72, 0.74]	0.75 [0.74, 0.76]	0.73 [0.73, 0.74]	0.70	0.77	0.71	0.70
UL 19-79y	0.97 [0.97, 0.98]	0.99 [0.98, 0.99]	0.99 [0.99, 1.00]	1.00 [1.00, 1.01]	1.00 [0.99, 1.00]	1.10	1.04	0.94	1.00

Magnesium

Direct and Indirect Canadian Data Supports Harmonization

- Approximately 900,000 results evaluated
- No age/sex-specific differences observed
- Recommend hRI verified in all nine Canadian Laboratories participating in cross-Canada verification program (*serum and plasma*)

19-79y F

19-79y F

UL

[46, 48]

97

[90, 100]

[47, 48]

87

[87, 69]

[47, 48]

89

[88, 89]

[45, 46]

87

[84, 88]

[47, 47]

87

[87, 89]

88

90

83

90

Creatinine

Direct and Indirect Canadian Data Supports Harmonization

- Approximately **13 million results** evaluated
- Sex-specific differences observed
- Recommended hRI verified in all nine Canadian Laboratories participating in cross-Canada verification program (*serum and plasma*)
- eGFR was calculated based on the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (2009) equation and individuals with an eGFR of <60 (mL/min/1.73m²) were excluded from analysis

THYROID STIMULATING HORMONE

Direct and Indirect Canadian Data Supports Harmonization

Result Summary:

TSH

- Approximately 8.6 million results evaluated
- No age/sex-specific differences observed
- Recommend hRI verified in all nine Canadian Laboratories participating in cross-Canada verification program (serum and plasma)
- Estimated TSH upper limit was higher relative to ATA guidance of 4.00 mIU/L, although concordant with lower confidence intervals

D.

Clinical Laboratory

	Indirect Analysis of Provincial Data						Direct International Initiatives*			
	Centaur AB	Architect BC	Architect ON	Cobas ON	All	ΑΤΑ	AUSS	NHANES	NORIP	
N	1121045	1648061	4207623	1688546	8665275					
LL 19-79y	0.67 [0.63, 0.68]	0.59 [0.58, 0.60]	0.60 [0.56, 0.60]	0.70 [0.67, 0.71]	0.60 [0.56, 0.61]	0.4	0.34	0.50	0.45	
UL 19-79y	5.02 [4.64, 5.16]	4.55 [4.42, 4.59]	4.45 [4.04, 4.53]	5.45 [5.13, 5.60]	4.48 [4.02, 4.85]	4.0	3.40	3.60	4.12	

	Indirect Analysis of Provincial Data						Direct International Initiatives*			
	Advia – AB	Cobas – BC	Cobas – ON1	Cobas – ON2	All	CHMS	AHRIA	AUSS	NORIP	UK
N	773026	1583639	3930985	1512821	7800471					
LL 19-79y	3.7 [3.70, 3.74]	3.8 [3.77, 3.84]	3.8 [3.77, 3.82]	4.1 [3.93, 4.13]	3.9 [3.89, 3.95]	3.8	3.5	3.7	3.6	3.5
UL 19-79y	5.1 [4.96, 5.07]	5.1 [4.97, 5.11]	5.1 [4.99, 5.10]	4.7 [4.68, 4.92]	4.9 [4.86, 4.92]	4.9	5.2	4.9	4.6	5.3

Potassium

Direct and Indirect Canadian Data Supports Harmonization

- Approximately **7.8 million results** evaluated
- No age/sex-specific differences observed
- Recommend hRI verified in all nine Canadian Laboratories participating in cross-Canada verification program in *serum only*

Potassium: Matrices Effects

Plasma vs Serum:

- Plasma potassium results were markedly lower as compared to paired sera
- Established hRI did not verify as per CSCC hRI WG criteria in plasma specimens
- A separate recommendation for plasma potassium is needed

		Indirect An	alysis of Pr	Direct International Initiatives*				
	Advia – AB	Centaur – BC	Architect – ON1	Cobas - ON2	All*	AUSSIE	NORIP	ΑΤΑ
N	124713	196029	972585	376870	1664797			
LL 19-79y	10.4 [10.2, 10.5]	9.2 [9.1, 9.6]	9.4 [9.4, 9.8]	12.6 [11.9, 14.0]	9.7	10.7	10.9	None
UL 19-79y	19.2 [18.1, 19.4]	15.4 [15.1, 16.4]	15.2 [15.1, 16.0]	18.4 [17.2, 18.9]	15.5	17	16.9	None

Free T4

Direct and Indirect Canadian Data do NOT Support Harmonization

- Approximately **1.6 million results** evaluated
- No age/sex-specific differences observed
- Upper reference limits ranged from 16.8-20.5
 pmol/L across provincial community laboratories
- Data suggests hRIs are not appropriate for free T4 test interpretation and manufacturer-specific results RIs are needed

Key Takeaways

Clinical Chemistry 69:9 991–1008 (2023) Informatics and Statistics

P

Reference Interval Harmonization: Harnessing the Power of Big Data Analytics to Derive Common Reference Intervals across Populations and Testing Platforms

Mary Kathryn Bohn,^{a,b} Dana Bailey,^c Cynthia Balion,^d George Cembrowski ,^e Christine Collier,^f Vincent De Guire,^g Victoria Higgins,^h Benjamin Jung,^{a,b} Zahraa Mohammed Ali,ⁱ David Seccombe,^j Jennifer Taher,^{b,k} Albert K.Y. Tsui,^{e,l} Allison Venner,^{l,m} and Khosrow Adeli^{a,b,*}

Implementation (consultation, practice guidelines etc.)

- Via a big data analytics approach, we assessed indirect datasets of unprecedented sample size providing a solid evidence-base for harmonization assessment
- Harmonized RIs were calculated for all assays, except free thyroxine
- **11 hRIs met proposed verification criterion for** ALP, ALT albumin (BCG), creatinine, chloride, LDH, magnesium, phosphate, potassium (serum), total protein (serum), and thyroid stimulation hormone
- Further investigation is needed for select analytes (albumin (BCP), calcium, total CO2, total bilirubin, sodium)

Data-driven approach can be harnessed to support RI harmonization in other populations:

- extract community laboratory data in their population covering relevant analytical methods
- 2) evaluate age-, sex-, and laboratory specific differences
- 3) derive hRIs using the refineR method and compare to any available direct population data
- 4) verify derived hRIs using prospectively collected specimens representative of their population

Applying this approach on a global scale lends itself to the evaluation of population-specific differences and feasibility of global RI harmonization

Acknowledgments

CSCC Working Group on Reference Interval Harmonization

Co-Chairs

Khosrow Adeli Christine Collier

Co-Authors

Dana Bailey Cynthia Balion George Cembrowski Vincent De Guire Trefor Higgins Victoria Higgins Benjamin Jung Zahraa Mohammed-Ali David Seccombe Jennifer Taher Albert Tsui Allison Venner

Contributors

Vipin Bhayana Isshan Bhoutiauy Angela Fung Barry Hoffman Peter Kavsak Ed Randell Matthew Estey Andrew Don-Wauchope

CSCC Head Office

Acknowledgements

Shervin Asgari **Terence** Agbor Jake Cosme Karina Rodriguez Capote James Dalton Josko Ivika Felix Leung Michelle Parker **Omair Sarfaraz** Joseph Macri Julie Shaw Janet Simons Julia Stemp Uvaraj Uddayasankar **Dorothy Truong** Nicole White-AlHabeeb