Reference Interval Harmonization in Canada: An Update from the CSCC Working Group

Jennifer Taher

On behalf of the Canadian Harmonized Reference Interval (hRI) Working Group Wednesday June 5th, 2019

SCC SECC

Acknowledgements

CSCC hRI Working Group Members:

<u>Co-Chairs</u> Khosrow Adeli Christine Collier

Calculations Team

Shervin Asgari Mary Kathryn Bohn Jake Cosme Qing Fan Victoria Higgins Zahraa Mohammed-Ali Jennifer Taher Albert Tsui

Analysis Team

Dana Bailey Cynthia Balion George Cembrowski Jim Dalton **Trefor Higgins Benjamin Jung** Joseph Macri David Seccombe Julia Stemp Alison Venner Nicole White-Al Habeeb CSCC 2019 June 2-5, 2019, Saint John, New Brunswick Annual Conference of the Canadian Society of Clinical Chemists (CSCC)

JENNIFER TAHER

I have the following financial relationships to disclose:

- Honoraria from Abbott
 - Received for a project that will not be discussed today

AND

I will not discuss off label use and/or investigational use in my presentation.

Outline

- Variation in test results and the impact on patient care and safety
- Lack of standardization and harmonization and major gaps in adult and pediatric reference intervals (RIs)
- International initiatives addressing harmonization using both direct and indirect methods
- Discuss the strategies for harmonized RIs being carried out by our CSCC hRI Working Group

Example: Alkaline Phosphatase (ALP) and Albumin

Central Role of Laboratory Medicine In Healthcare Delivery

Laboratory Medicine is part of a multi-disciplinary team at the centre of healthcare

The **quality** of the Clinical Laboratory Service is critically dependent on:

- Accurate/Precise Testing Process (validating methods/systems)
- Accurate interpretation of test results based on <u>appropriate reference intervals</u> or decision limits

Clinical Laboratory Testing & Interpretation – *Many Challenges*

• Lack of Standardization or Harmonization of Assay Methodology

>>> Considerable variation in test results for the same test on the same patient

• Major Gaps in Adult and Pediatric Reference Intervals and Appropriate Decision Limits

>>> Leading to inaccurate/erroneous interpretation

Should be regarded as <u>a major source of laboratory error</u> affecting patient care and patient safety

What Is The Solution?

- Standardization: achieving equivalent results by having calibration traceable to a reference system component
- Harmonization: achieving equivalent results among different measurement procedures

Standardization

Measurands for which reference procedures exist or can be developed

Measurands for which no reference procedures exist nor are likely to be developed

Harmonization

- Equivalent results among different measurement procedures for the same laboratory test
 - ♦ Nomenclature
 - ♦ Patient preparation
 - ♦ Specimen collection and handling
 - ♦ Result value

- ♦ Reporting units
- ♦ Interpretive information

Harmonization Initiative in Canada

Focus on Harmonization of Test Result Interpretation by Harmonizing Adult and Pediatric Reference Intervals

Reduce diagnostic errors and improve patient safety

Reference Interval Initiatives: *Towards Harmonization*

1. CHMS

- Canadian Health Measures Survey conducted by Statistics Canada
- Adeli et al. Clinical Chemistry 2015

2. Caliper

- Canadian Laboratory Initiative in Pediatric Reference Intervals
- Estey et al. Clinical Biochemistry 2013

3. AHRIA

- Australasian Harmonised Reference Intervals for Adults
- Tate et al. Clinical Biochemistry 2014

4. NORIP

- Nordic Reference Interval Project
- Hilsted et al. Scandinavian Journal of Clinical and Laboratory Investigation 2013

5. UK Path Harmony

- United Kingdom Pathology Harmony
- Berg, J. Clinica Chimica Act 2014

6. Aussie

- Aussie Normals study
- Koerbin et al. Chemical Pathology 2015

escelsece CSCC Harmonization of Reference Interval (hRI) Working Group

Goal: To establish evidence-based harmonized reference intervals and support their implementation in laboratories across the country

Objective 1: Review adult and pediatric RIs currently in use in clinical laboratories across Canada

Objective 2: Assess the available evidence on RIs obtained in prospective studies of healthy populations

Objective 3: Develop appropriate recommendations and guidelines on the use of harmonized RIs across Canada

Variation in RIs across Canada

Clinical Biochemistry 50 (2017) 925-935

Analytical

National Survey of Adult and Pediatric Reference Intervals in Clinical Laboratories across Canada: A Report of the CSCC Working Group on Reference Interval Harmonization

Khosrow Adeli^a,*, Victoria Higgins^a, David Seccombe^b, Christine P. Collier^c, Cynthia M. Balion^d, George Cembrowski^e, Allison A. Venner^f, Julie Shaw^g, on behalf of the CSCC Reference Interval Harmonization (hRI) Working Group

- > 37 laboratories reported RIs for 7 analytes (ALT, ALP, calcium, creatinine, FT4, hemoglobin, sodium)
- > 40 laboratories measured 6 analytes (all except hemoglobin) in reference samples
- > High variation in reported RIs even between laboratories using the same instrumentation
- > RI variation was greater than test result variation for the majority of analytes

ALP Reference Intervals

Adeli et al. Clinical Biochemistry 2017

Direct versus Indirect RI Studies

Direct

- Selection of healthy reference individuals using defined inclusion and exclusion criteria
 - E.g. volunteers recruited from the community

Indirect

- Uses patient data already collected and stored in a laboratory database
 - E.g. hospital laboratories or outpatient care settings

Direct RIs

- PRO
- Recommended by CLSI
- Better representation of a true healthy population
- Minimal pre-analytical variation

CON

- Resource requirements (cost, time)
- Definition of "health" can vary between studies

Indirect RIs

Less resources required (time, cost)

- Analysis is directly targeting the local population
- Pre-analytical factors reflect those used in the local laboratory

CON

- - Determination of healthy population/distribution relies on statistical methods
- - Inclusion of unhealthy subjects may result in skewed or broader reference intervals

Less control of pre-analytical specifications

Direct Statistical Method

Tahmasebi H, et al. eJIF<u>CC 2017</u>

Direct Reference Interval Databases in Healthy Canadian Children and Adults

Two robust, evidence-based reference interval databases established from the healthy Canadian population Pediatrics – **CALIPER** (1-<19 years) Pediatric, Adults, Geriatric – **CHMS** (3-<80 years)

A Comprehensive Database of Reference Intervals for over 170 Tests

Statistique Canada

The Canadian Health Measures Survey: CALIPER-CHMS Collaboration

The Canadian Health Measures Survey (CHMS) is a Canada-wide health information survey conducted by Statistics Canada

Pediatric, adult and geriatric reference intervals

Health Data Collection

Canada-wide health information survey In-home interview (general health information)

Mobile examination centre (blood and urine samples, body measurements)

~12,000 Canadians aged 3-79y

Detailed exclusion criteria

Included pregnancy, high blood pressure, diabetes, cancer, thyroid condition, hepatitis, etc.

Indirect Reference Interval Establishment

There are many advantages to the establishment of direct reference intervals. However, it is very challenging to obtain a sufficient number of samples from healthy individuals

Indirect Reference Interval Establishment

- Use outpatient datasets across Canada
- Use statistical algorithms to define the distribution of the healthy population
 - Subsequently define 2.5th and 97.5th percentile

Indirect Reference Interval Determination Statistical Approaches

Hoffman 1963 Bhattacharya 1967 Naus et al. 1980 Martin et al. 1981 Baadenhuijsen et al. 1985 J. B. Hemel et al. 1985 Oosterhuis et al. 1990 Kairisto et al. 1995 Ferré-Masferrer et al. 1999 Ilcol et al. 2006 Arzideh et al 2007

Indirect Approach

We should employ statistical techniques with the abilities to:

- 1. Identify and separate the distribution of pathological and non-pathological subgroups with high reliability and accuracy and not in a subjective way.
- 2. Convert the distribution of <u>only</u> non-pathological subgroup to Gaussian.
- 3. Not rely on the distribution of pathological values.
- 4. Estimate the parameters of the distribution of pathological and nonpathological subgroups in an accurate way.
- 5. Evaluate whether the distribution fits well or not (goodness of fit).

Arzideh Method

Clin Chem Lab Med 2007;45(8):1033-1042 © 2007 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2007.249

Reference limits of plasma and serum creatinine concentrations from intra-laboratory data bases of several German and Italian medical centres Comparison between direct and indirect procedures $\stackrel{\text{trans}}{\approx}$

Farhad Arzideh^a, Werner Wosniok^a, Rainer Haeckel^{b,*}

^a Institut f
ür Statistik, Universit
ät Bremen, Bremen, Germany
^b Bremer Zentrum f
ür Laboratoriumsmedizin, Klinikum Bremen Mitte, Bremen, Germany

An improved indirect approach for determining reference limits from intra-laboratory data bases exemplified by concentrations of electrolytes

Ein verbesserter indirekter Ansatz zur Bestimmung von Referenzgrenzen mittels intra-laboratorieller Datensätze am Beispiel von Elektrolyt-Konzentrationen A plea for intra-laboratory reference limits. Part 1. General considerations and concepts for determination

Indirect determination of pediatric blood count reference intervals

Abstract

Background: Determination of pediatric reference intervals (RIs) for laboratory quantities, including hematological quantities, is complex. The measured quantities vary by age, and obtaining samples from healthy children is difficult. Many widely used RIs are derived from small sample numbers and are split into arbitrary discrete age

*Corresponding author: Markus Metzler, Department of Pediatrics, University of Erlangen-Nuremberg, Loschgestr. 15, 91054 Erlangen, Germany, Phone: +49 9131 8533783, E-mail: markus.metzler@uk-erlangen.de Jakob Zierk, Wolfgang Rascher and Manfred Rauh: Department of Pediatrics, University of Erlangen-Nuremberg, Erlangen, Germany Farhad Arzideh: Department of Statistics, University of Bremen, Bremen, Germany Rainer Haeckel: Bremer Zentrum für Laboratoriumsmedizin, Klinikum Bremen Mitte, Bremen, Germany

Clin Chem Lab Med 2007;45(8):1043–1057 © 2007 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2007.250

Farhad Arzideh¹, Gunnar Brandhorst², Eberhard Gurr³, Wilhelm Hinsch⁴, Torsten Hoff⁶, Lennart Roggenbuck⁶, Gregor Rothe⁷, Gerhard Schumann⁸, Bernd Wolters⁹, Werner Wosniok¹ and Rainer Haeckel^{7,*}

and the second of the second

A plea for intra-laboratory reference limits. Part 2. A bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes

Reference Limit Estimator Software

Change the optional Settings and Start the Estimation

START Step 1: Descriptive Statistics ST	TART Step 1a: Drift of Data START Step 2: Estimation of Reference	START Step 2: Estimation of Reference Limits (RLs)			
Settings 1 Unit	Min age in years or NA (NA=18 years) 6 Max age in years or NA (NA=120 years) 79				
Reference limits actually used Actually used Reference Male lower RL Limits (or NA) Male upper RL Load last used RL	Female lower RL NA All lower RL NA Female upper RL NA All lower RL NA				
Settings 2 X-Axis (NA=automatic) min value of x-axis (NA=automatic) MA max value of x-axis (NA=automatic)	Settings 3 Quantile (1: 50; 3: 25,50,75; 5: 5,25,50,75,95-Quantile) Model	3 V PN V			
Calculation will be restricted to Date (or NA) Start: NA End: NA Calculation will be restricted to Date (or NA) Calcula	Calculate permissible uncertainity of RL FALSE Confidence intervall (double click to change) FALSE Statistical test (double click to change) FALSE	TRUE Options			

CSCC hRI Approach

Collect Canada-wide data for each analyte and calculate indirect reference intervals (Arzideh method)

Compare provincial and Canada-wide *indirect* reference intervals with published *direct* intervals (CHMS & Caliper) to make a final recommendation

Support national implementation of harmonized reference intervals, monitor implementation, and revise recommendations as needed

Assays Selected for RI Harmonization

Consider method bias, manufacturer traceability, biological variation and literature

Electrolytes

• Na, K, Cl, Mg, CO2

Renal

• Creatinine, Ca, Phosphate

Hepatic

• ALT, ALP, Alb, TP, TBII, LDH

Endocrinology

• HbA1c, FT4, FT3, TSH, Glucose (fasting)

Lipids

• Cholesterol, HDLc, LDL, Non-HDLc, Triglycerides

Data Collection – Canada Wide

Two years of data (Jan 2017-Dec 2018) with repeats (annually) removed across all age ranges

Statistical Approach

Remove unstable months from each data-set

Criteria Used: Total Allowable Error and Reference Change Value

Check Stability

ALP Monthly Instability (%)

Westgard 1/3rd TEA (12%) = 4% ½ RCV (20 %) = 10%

Statistical Approach

Combine data from each center into Canada-wide file Statistical differences between centers confirmed using Harris & Boyd Method

Determine Provincial Differences

Method: Harris & Boyd

Example A:		Example B:			
Dataset (3-79y) Differences?		Dataset (3-79y)	Differences?		
Alberta		Alberta			
British Columbia		British Columbia			
Ontario -LL		Ontario -LL			
Ontario - DC	} NO	Ontario - DC	YES		
Harmonized Par	rtitions	Harmonized Partitions			
AB, BC & ON-LL,	ON-DC	AB, BC, ON-LL			

ALP: Dataset Differences

Canada-Wide Dataset

Use Canada-wide file to determine age- and sex-specific partitions

Statistical differences confirmed using Harris & Boyd Method

Determine age/sex-specific differences

Method: Harris & Boyd

Example A:			Example B:					
Age Partition	Sex-specific differences?	Age-specific differences?	Age Partition	Sex-specific differences?	Age-specific differences?			
3-5 years	NO		3-5 years	NO	- YES			
6-15 years	NO		6-15 years	NO				
16-49 years	NO		16-49 years	NO				
50-79 years	NO	} NO	50-79 years	NO	} NO			
	- 							
Harmonized Partitions			Harmonized Partitions					
3-79 years			3-5 years					
			6-79 years					

ALP: Partition Establishment

ALP - Canada-Wide

0 20 40 60 80 Age (years) PtSex

• F

• M

Consider Density of The Distribution

Create a density plot to help visually assess any age-specific differences

Remove outliers

Outliers are removed on a partition-specific basis for each dataset

ALP Outlier Removal

- A. Tukey method: analytes with normal/Gaussian distribution 1.5x IQR
- B. Horn method: analytes with small skewness; recommended by CLSI
- C. Hubert method: analytes with large skewness

ALP Outlier-Removed Data

n before Outlier Removal: 5,209,913 | Outlier Removal Method: Hubert # Outliers Removed: 149,932 | Proportion Removed: 3%

Comparison to CHMS

Reference Interval Determination

Reference Intervals Estimated Using the Arzideh Method

Confirm Assumptions

- \checkmark Non-pathological distribution is Gaussian.
- X Total distribution is unimodal
- X The overlap between pathological and nonpathological is partial
 - Pathological is <20%</p>

ALP – Canada-Wide: 3-10 years

Non-pathological: 99%

- ✓ Estimated distribution of NP is Gaussian
- Central part of distribution is unimodal
- ✓ Overlapping between pathological and nonpathological is partial

n: 50235 If <4000, report with caution

Reference Interval: 141-377 U/L **Confidence Interval**: L: (137, 143) U: (363, 385)

Estimated distributions for non-pathological values (green curve), pathological values (red) and whole data (blue). Green lines (and given numers) indicate 2.5 and 97.5 percentiles of the estimated distribution for non-pathological values (RL).

ALP – Alberta: 11-13 years (Female)

Non-pathological: 54%

- ✓ Estimated distribution of NP is Gaussian
- X Central part of distribution is unimodal
- X Overlapping between P and NP is partial

n: 2223 If <4000, report with caution

Reference Interval: 73.0-238 U/L Confidence Interval: Unable to estimate

Estimated distributions for non-pathological values (green curve), pathological values (red) and whole data (blue). Green lines (and given numers) indicate 2.5 and 97.5 percentiles of the estimated distribution for non-pathological values (RL).

Repeat for each partition: x9 Repeat for each dataset + Canada-Wide: x5

45 Calculations for ALP

Male and Female RI: Across Canada

hRI Indirect Analysis	Alberta	British Columbia	Ontario - Dynacare	Ontario - LifeLabs	Canada-Wide
3-10y	147-395	138-359	133-350	142-384	141-376
11-13y*	150-488	141-375	14.3-457	148-453	151-444
14-17*	51.2-342	52.2-382	53.4-238	50.5-276	46.6-323
18-24y*	48.9-129	45.5-123	44.6-115	44.9-118	45.1-120
25-29*	45.1-118	41.9-113	40.6-107	42-109	41.9-111
30-80	42.5-123	40.0-119	38.7-112	40-116	40.2-118
hRI Indirect Analysis	Alberta	British Columbia	Ontario - Dynacare	Ontario - LifeLabs	Canada-Wide
hRI Indirect Analysis 3-10y	Alberta 147-395	British Columbia 138-359	Ontario - Dynacare 133-350	Ontario - LifeLabs 142-384	Canada-Wide
hRI Indirect Analysis 3-10y 11-13y*	Alberta 147-395 NA	British Columbia 138-359 NA	Ontario - Dynacare 133-350 NA	Ontario - LifeLabs 142-384 NA	Canada-Wide 141-377 50.1-400
hRI Indirect Analysis 3-10y 11-13y* 14-17*	Alberta 147-395 NA 49.5-143	British Columbia 138-359 NA 45.0-137	Ontario - Dynacare 133-350 NA 45.4-129	Ontario - LifeLabs 142-384 NA 46.1-127	Canada-Wide 141-377 50.1-400 46.3-131
hRI Indirect Analysis 3-10y 11-13y* 14-17* 18-24y*	Alberta 147-395 NA 49.5-143 40.0-114	British Columbia 138-359 NA 45.0-137 37.4-101	Ontario - Dynacare 133-350 NA 45.4-129 36.3-102	Ontario - LifeLabs 142-384 NA 46.1-127 36.7-104	Canada-Wide 141-377 50.1-400 46.3-131 37.0-105
hRI Indirect Analysis 3-10y 11-13y* 14-17* 18-24y* 25-29*	Alberta 147-395 NA 49.5-143 40.0-114 36.7-116	British Columbia 138-359 NA 45.0-137 37.4-101 34.6-97.7	Ontario - Dynacare 133-350 NA 45.4-129 36.3-102 34.4-96.4	Ontario - LifeLabs 142-384 NA 46.1-127 36.7-104 34.2-99.6	Canada-Wide 141-377 50.1-400 46.3-131 37.0-105 34.4-102

Male RI: Comparison Across Canada

Female RI: Comparison Across Canada

ALP Male RI: Canadian Direct vs Indirect Data

Albumin

Albumin Monthly Instability

Westgard 1/3rd TEA (4%) = 1.3% ½ RCV (10 %) = 5%

Oct 18

Oct 18

Jul 18

4

Jan 17

Apr 17

Jul 17

British Columbia - LifeLabs

Jul 18

Apr 18

Oct 18

Oct 17 Jan 18

Ч

4

Jan 17

Apr 17

Jul 17

Months

Jan 18

Apr 18

Oct 17

Albumin: Dataset Differences

Albumin: Partition Establishment And Outlier Removal

Albumin: Canada-Wide 3-15yrs

Non-pathological: 98%

- Estimated distribution of NP is Gaussian
- Central part of distribution is unimodal
- ✓ Overlapping between pathological and nonpathological is partial

n: 73091 If <4000, report with caution

Reference Interval: 41.2-50.7 g/L **Confidence Interval**: L: (41.2-41.3) U: (50.6-50.7)

Estimated distributions for non-pathological values (green curve), pathological values (red) and whole data (blue). Green lines (and given numers) indicate 2.5 and 97.5 percentiles of the estimated distribution for non-pathological values (RL).

Male RI: Comparison Across Canada

Albumin Male RI: Canadian Direct vs Indirect Data

Indirect Analysis of Canada-Wide Datasets on Electrolytes

Electrolytes			Alberta		British Columbia		Ontario (Dynacare)		Ontario (LifeLabs)		Canada-Wide	
	Unit	Partition	n	RI	n	RI	n	RI	n	RI	n	RI
Bicarbonate	mmol/L	3-79	154144	22.7-31.8	95988	22.6-31.9	52687	21.5-30.9	158312	20.4-31.1	466785	21.8-31.6
Chloride*	mmol/L	3-79	178156	100.9-109.1	82934	96.4-107.1	649960	97.6-106.3	2330038	96.8-106.5	3223932	97.8-106.4
Magnesium	mmol/L	3-79	211038	0.725-0.988	130517	0.723-0.993	164991	0.744-1.01	438581	0.725-1.01	943956	0.729-1.00
Potassium	mmol/L	3-79	800397	3.73-5.05	1632009	3.82-5.23	1576108	3.84-5.18	4058977	3.78-5.09	8068310	3.8-5.13
Sodium	mmol/L	3-15	22746	137.3-143.6	25302	137.6-144.1	37634	138.6-144.8	61462	137.9-144.2	165593	137.7-144.3
		16-49 M	144582	136.4-144.0	223923	138.2-144.6	248510	138.0-145.6	550060	138.1-144.7	1151674	137.9-144.9
		16-49 F	189264	136.5-143.2	305561	137.3-143.7	337581	137.2-144.4	764870	137.2-143.8	1582037	137.1-144.0
		50-79	410956	137.5-144.7	1049863	138.1-145.3	903788	138.7-145.9	2537066	138.0-145.4	4897907	137.5-145.7

M, male; F, female; n, number of observations after removing the outliers; LRL, lower reference limit; URL, upper reference limit

CSCC hRI Strategic Plans

Collect Canada-wide data for each analyte and calculate indirect reference intervals (Arzideh method)

Compare provincial and Canada-wide *indirect* reference intervals with published *direct* intervals (CHMS & Caliper) to make a final recommendation

Support national implementation of harmonized reference intervals, monitor implementation, and revise recommendations as needed

ESCC SECC

Acknowledgements

CSCC hRI Working Group Members:

Co-Chairs

Khosrow Adeli Christine Collier

Calculations Team

Shervin Asgari Mary Kathryn Bohn Jake Cosme Qing Fan Victoria Higgins Zahraa Mohammed-Ali Jennifer Taher Albert Tsui

Analysis Team Dana Bailey Cynthia Balion George Cembrowski Jim Dalton Trefor Higgins **Benjamin Jung** Joseph Macri David Seccombe Julia Stemp Alison Venner Nicole White-Al Habeeb

Previous Members

Terence Agbor Angela Fung Josko Ivika Felix Leung Michelle Parker Omair Sarfaraz Julie Shaw Janet Simons Uvaraj Uddayasankar Dorothy Truong

Any questions (or additional datasets) welcome!

<u>Khosrow.adeli@sickkids.ca</u> <u>Christine.collier@lifelabs.com</u>

