Evidence-Based Harmonization of Adult Reference Intervals Across Canada using Big Data Analytics: A Report of the CSCC Working Group on Reference Interval Harmonization (hRI)

Mary Kathryn Bohn, PhD Candidate The Hospital for Sick Children & University of Toronto, Toronto, ON, Canada

On Behalf of the CSCC Reference Interval Harmonization Working Group

September 27th 2021 AACC Student Abstract Oral Presentation

Harmonization in Laboratory Medicine

- Harmonization is a fundamental aspect of ensuring the analytical and clinical quality of the *total testing process*
- Growing expectation for standardized patient care across healthcare centers
- Harmonization efforts have largely focused on the preanalytical and analytical phase of testing, including:
 - Standardized quality indicator goals
 - o Increased automation
 - Development of commutable reference standards and improved metrological traceability

Have similar gains been made in reference interval reporting?

Clinical chemistry and laboratory medicine. 2013 Apr 1;51(4):741-51.

CSCC Working Group on Reference Interval Harmonization

Main Objective: Establish evidence-based harmonized/common reference intervals (hRls) and support their implementation in laboratories across Canada.

Co-Chairs

2021 AACC

LAB EXPO

Khosrow Adeli Christine Collier

THE LAB + BEYOND

WG Members Zahraa Mohammed-Ali Albert Tsui Dana Bailev Cynthia Balion George Cembrowski Jake Cosme James Dalton **Trefor Higgins** Victoria Higgins **Benjamin Jung** Joseph Macri David Seccombe Julie Shaw Julia Stemp Jennifer Taher Allison Venner Nicole White-AlHabeeb

Reference Interval Harmonization in Canada: Current Gaps

Reference interval harmonization supports consistent and standardized test result interpretation, *when appropriate*

CSCC 2017 National Survey on Reference Interval Variation:

Design:

2021 AACC

LAB EXPO

- 37 laboratories, 7 analytes: RIs for ALT, ALP, calcium, creatinine, fT4, hemoglobin, sodium
- 40 laboratories measured 6 analytes in reference samples (hemoglobin excluded)

Key Findings:

- Variability in RIs even between laboratories using the same instrumentation
- RI variability exceeded test result variability

THE LAB + BEYOND

Clinical biochemistry. 2017 Nov 1;50(16-17):925-35.

CSCC hRI WG: Selection of initial analyte panel

- Candidate analytes for harmonization must demonstrate minimal analytical bias across the platforms to be harmonized
- For the analytical platforms used in Canada, we evaluated:
 - Method

2021 AACC

.AB EXPO

- Manufacturer
- Calibration traceability
- Reference method

THE LAB + BEYOND

Electrolytes

- Sodium
- Potassium
- Magnesium
- Chloride
- CO2

Hepatic

- ALT
- ALP
- Total Protein
- Total Bilirubin
- Albumin
- LDH

Renal

- Creatinine
- Calcium
- Phosphate

Endocrine

- Free T3
- Free T4
- TSH

17 initial analytes were selected

CSCC hRI WG: Selection of reference interval approach

Direct Approach

- Recommended by CLSI
- Better representation of a healthy population
- Minimal pre-analytical variation
- 0
- Extensive resource requirements
- Large sample size required
- Updating recommendations as new analytical platforms develop is challenging

Indirect Approach

- Less resources required
- Data easily representative
- Pre-analytical processes reflect routine laboratory
 practice
- Requires in-depth statistical analysis and consideration
- Determination of healthy population relies on statistical methods

CSCC hRI WG: Selection of reference interval approach

- Plot the cumulative frequency of the distribution on a normal probability paper
- Reference interval extrapolated through linear regression

THE LAB + BEYOND

2021 AACC

Bhattacharya Method (1967)

- Mathematical straightening of the Gaussian distribution
- The slope and intercept are used to determine the mean and SD, and from this, the reference interval

The Clinical biochemist Reviews. 2019 May;40(2):99.

CSCC hRI WG: Selection of data contributing centres

• Appropriate selection of data contributing centres is essential to optimize the performance of indirect methods

Criteria for data centre contribution:

- Large outpatient population
- Representative of Canadian population
- *Representative of different analytical platforms*
- o Consistent results over time

Formed collaborations with community laboratories to support this initiative

Retrieve population dataset

- Extract data from multiple centres across two year period
- ✓ Remove all repeat observations
- ✓ Include key covariates:
 - Age

1

- Sex
- Date of Collection
- Result

Dynacare°

Province: Ontario Analytical Platform: Roche Sample Size: 1062848

Province: Alberta Analytical Platform: Siemens Sample Size: 503169

L^yfeLabs[®]

Province: Ontario Analytical Platform: Roche Sample Size: 2655240

LyfeLabs[®]

Province: BC Analytical Platform: Roche Sample Size: 781171

2

Assess age/sex differences

- Visually assess raw data across each centre
- Assess data density to evaluate agespecific trends
- Use specialized plots to view age- and sex-specific differences
- Confirm visual assessment statistically using Harris & Boyd Method

ALP – Ontario (LifeLabs)

50-<60

Age (years)

Significant age- and sex-specific differences (20-40y M/F, 40-80y)

60-<70

70-<80

Data clean up

3

- ✓ Monthly stability assessed visually
- Percent deviation from median compared to reference change value (RCV) reported by EFLM
- Remove outliers for each centre based on Tukey or Hubert method

Centre-specific differences

- Assess centre-specific differences using Harris & Boyd method
- Combine all centres if no significant differences are observed into Canada-Wide file

4

5

Establish RI for each partition

- ✓ Use TML method to establish reference intervals for each partition
- Compare established reference intervals across provinces and reference intervals

Preliminary hRIs Across Canada

Compare and assess

5

- Compare to indirect and direct data published by international initiatives
- Compare to manufacturer package insert data
- Compare to what is currently used at each centre
- ✓ Internal discussion and finalization

Preliminary Recommendations

Proposed Harmonized RI				
19 to <40y M	40-115 U/L			
19 to <40y F	35-105 U/L			
40 to <80y	40-120 U/L			

CSCC hRIWG: Preliminary Recommendations & Next Steps

Analyte	Calculated RI		Recommended Harmonized RI	
Alanine	19 to <80y M	11-53	19 to <80y M	RI: 11-53, CDL: <33*
aminotransferase (U/L)	19 to <80y F	8-35	19 to <80y F	RI: 8-35, CDL: <25ª
Albumin BCG (g/L)	19 to <60y M	40-51	19 to <80 years	40-50
	19 to <60y F	39-49		
	60 to <80y	39-49		
Alkaline Phosphatase (U/L)	19 to <40y M	42-114	19 to <40y M	40-115
	19 to <40y F	34-103	19 to <40y F	35-105
	40 to <80y	41-119	40 to <80y	40-120
Lactate Dehydrogenase (U/L)	19 to <80y	122-237	19 to <80 y	120-240
Total Bilirubin (umol/L)	19 to <80y M	3.5-20.0	19 to <80 y M	3-20
	19 to <80y F	2.8-15.8	19 to <80 y F	3-16
Total Protein (g/L)	19 to <80y	61-79	19 to <80y	60-80
Phosphate (mmol/L)	19 to <60y	0.79 - 1.45	19 to <80y	0.80 1.45
	60 to <80y M	0.77 - 1.43		
	60 to <8 y F	0.86 - 1.47		
Calcium (mmol/L)	19 to <40y M	2.21 - 2.54	19 to <80y	2.15 - 2.55
	19 to <40y F	2.16 - 2.50		
	40 to <80y	2.16 - 2.52		
Creatinine (umol/L)	19 to <80 years M	63-117	Not finalized Not fin	Not finalized
	19 to <80 years F	48-95		Not finalizea
FT3 (pmol/L)	19 to <80y	3.01 - 5.68	19 to <80y	3.0 to 5.7
FT4 (pmol/L)	19 to <80y	9.7 - 15.5	19 to <80y	9.5 to 15.5
TSH (mIU/L)	19 to <80y	0.60-4.55	19 to <80y	RI: 0.60-4.55, CDL: 0.1-4.12 ^b
Sodium (mmol/L)	19 to <80y	138-145	19 to <80y	137-145
Potassium (mmol/L)	19 to <80y	3.8-5.1	19 to <80y	3.8-5.1
Magnesium (mmol/L)	19 to <80y	0.73-1.00	19 to <80y	0.73-1.00
Total CO2 (mmol/L)	19 to <80y	22-32	19 to <80y	22-30
Chloride (mmol/L)	19 to <80y	97 - 107	Not finalized	Not finalized

Recommended harmonized reference intervals for 17 assays discussed by hRI Working Group

Establishment of preliminary hRIs for 15/17 parameters

Limitations to the current data:

- Only three manufacturers represented
- Only three provinces represented
- All data contributing centres use serum as preferred matrices

How can they be addressed prior to implementation?

Objective: To verify proposed hRIs on major analytical platforms across Canada using serum and plasma samples prospectively collected from healthy adults.

$\begin{bmatrix} 20 \text{ Males (19-40y)} \\ 10 \text{ Males (40-80y)} \\ 10 \text{ Females (40-$

Study Design:

2021 AACC

.AB EXPO

THE LAB + BEYOND

Roche

he Ortho SIEMENS

CSCC hRI WG: Cross-Canadian Verification Study - Results

- Select analytes require further analysis and investigation (e.g. TSH, FT3, FT4, creatinine)
- Minimal differences between matrices were observed

*shaded grey area indicates proposed hRIs

Final Conclusions and Next Steps

- A novel big data analytics approach was undertaken to defined preliminary hRIs for 17 analytes:
 - (1) extraction of data from community reference laboratories across Canada
 - (2) assessment of outliers
 - (3) statistical evaluation of age, sex, and center-specific differences
 - (4) derivation of preliminary hRIs using the TML method
 - (5) comparison of established hRIs to direct data in the healthy Canadian population.
- Robustness of these data was assessed through a Cross-Canada Verification Study where results supported implementation of these recommendations (exceptions include: FT4, TSH, FT3, and creatinine)
- Future work will focus on finalizing recommendations, supporting their implementation, and expanding this approach to other analytes

Acknowledgments

CSCC Working Group on Reference Interval Harmonization

Co-Chairs

Khosrow Adeli Christine Collier

Abstract Co-Authors

Zahraa Mohammed-Ali Albert Tsui Dana Bailey Cynthia Balion George Cembrowski Jake Cosme James Dalton **Trefor Higgins** Victoria Higgins **Benjamin Jung** Joseph Macri **David Seccombe** Julie Shaw Julia Stemp Jennifer Taher Allison Venner Nicole White-AlHabeeb

Contributors

Vipin Bhayana Isshan Bhoutiauy Vincent De Guire Qing Fan Matthew Estey Angela Fung Barry Hoffman Peter Kavsak

Previous Members

Terence Agbor Josko Ivika Felix Leung Michelle Parker Omair Sarfaraz Julie Shaw Janet Simons Uvaraj Uddayasankar Dorothy Truong Shervin Asgari

CSCC Head Office

Interested in becoming involved? Contact co-chairs Drs. Adeli and Collier (Khosrow.adeli@sickkids.ca, christine.collier@fraserhealth.ca)

